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ABSTRACT 

This paper proposed a new classification method based on Slantlet Transform (ST) combined with an automated 

classification mechanism based on Artificial Neural Network (ANN) for distinguishing magnetizing inrush current from 

internal fault currents in three phase power transformers.  Slantlet Transform has been regarded as a contemporary 

development in the field of multi-resolution analysis, which is proposed as an improvement over the discrete wavelet 

transform (DWT). For the evaluation of the developed algorithm, transformer modeling and simulation of internal fault 

currents and magnetizing inrush currents are carried out in power system computer–aided designing PSCAD/EMTDC. For 

each candidate internal fault or magnetizing inrush currents waveform suitable features are extracted by employing ST. 

Then, a successfully trained Artificial Neural Network based classifier, developed utilizing inputs comprising the features 

extracted from a training set of waveforms, is implemented for a testing set of sample waveforms. The simulation results 

obtained show that the new algorithm is more reliable and accurate. It provides a high operating sensitivity for internal 

faults and remains stable for inrush currents of the power transformers.  

KEYWORDS:  Power Transformer, Differential Protection, Slantlet Transform, Artificial Neural Network 

INTRODUCTION 

Power transformers are very expensive and vital components of electric power system. The continuous monitoring 

of power transformer can provide early warning of electrical failure and could prevent catastrophic losses. It minimizes the 

damages and provides uninterrupted power supply. Accordingly, high expectations are imposed on power transformer 

protective relays. Expectations from protective relays include dependability (no missing operations), security (no false 

tripping) and speed of operation (short fault clearing time). 

Whenever, there is large and sudden change in the input terminal voltage of transformer, either due to switching-

in or due to recovery from external fault getting, a large current is drawn by the transformer from the supply that this 

current is usually ten times that of the full load current. It persists only for a very short duration and decays very quickly, 

which is very high magnitude causes the relay to operate falsely. This phenomenon is known as magnetizing inrush, it look 

likes an internal fault to the differential relay and ends up as spill current and the relay mal-operates. Distinguishing inrush 

current from an internal fault current is one of the most challenging power system problems. To overcome this drawback, 

percentage differential relay was implemented. But still percentage differential relay tend to mal-operate for inrush 

currents.  One way to combat this problem is to desensitize the relay for a brief period of time, just after switching on. 

However, this is not desirable, since the probability of insulation failure just after switching on is quite high and the 

desensitized relay would be blind to faults taking place at that crucial time.  Earlier, Harmonic restraint techniques were 

used which discriminates inrush current from internal fault using second harmonic component [1].This method based on 

the second harmonic content with respect to fundamental one was introduced as an identification criterion [2], which 

improved security and dependability was appreciated. However, sometimes, the second harmonic component may be 

generated in the case of internal faults in the power transformer and this is due to current transformer (CT) saturation or 
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presence of a shunt capacitor or the distributive capacitance in a long extra high voltage transmission line to which the 

transformer may be connected [3,4]. Inrush current will have dominant second harmonic component compared to internal 

fault. However, with improvement in transformer design, this second harmonic component is highly reduced and it was 

complex to discriminate using harmonic restraint techniques [5]. 

To enhance the reliability of differential protection, and for the above foregoing problem, several methods have 

utilized voltage signals as well as current signals [6]. In [7], differential power method has been proposed to recognize fault 

from inrush current. The proposed method in [8] is based on modal transform of voltage and current wave forms. 

Disadvantages of these methods include the need to use voltage transformers and increased protective algorithm 

calculation cost. In other methods, fault conditions are recognized by the distortion characteristic of differential current 

wave form. One of these methods operates via measuring of intervals between two successive peaks of differential current 

wave form [9]. The operation criterion in another method is the duration in which differential current wave form remains 

near zero [10]. Delayed fault detection is the disadvantage of this group of algorithms. Various methods such as wave 

comparison and error estimation method [11], fuzzy logic based techniques [12], principle component analysis method 

[13], and correlation analysis method [14] to discriminate internal fault condition from non-fault condition have been 

proposed. In [15, 6, 7], differential current harmonics were used has input to train neural network. Few works which 

investigate the feasibility of using ANN for power transformer differential protection has also been reported [16,17].  The 

problem associate with these methods is the need to design neural networks or fuzzy lows, which require a huge number of 

training patterns produced by simulations of various cases [18]. To overcome the above limitations, wavelet transform is 

required. Wavelet transform is a powerful tool in the analysis of the transient phenomena of power transformers because of 

its ability to extract information from the transient simultaneously in both the time and frequency domain unlike Fourier 

transform, which can give the information the frequency domain only. Wavelet transforms have been extensively used for 

analyzing the transient phenomena in a power transformer for distinguishing internal fault current from no fault condition 

[19]. The discrete wavelet transform (DWT) is particularly useful for signal/ image processing [20]. In fields of de-noising, 

compression, estimation etc. In [21-22] authors have used discrete wavelet transform for differential protection. In [23, 24] 

have utilized wavelet transform for feature extraction and ANFIS (adaptive neuron fuzzy inference system). 

However, it cannot yield an optimal discrete –time basis, from the point of view of time localization. To overcome 

these limitations, very recently, an improved variant of DWT, namely, Slantlet transform (ST) has been widely used as a 

feature extracting tool, which can provide better time localization [25]. ST has been derived from DWT, wherein the filter 

bank structure is implemented in a parallel form, employing different filters for each scale [25]. ST can be implemented 

employing filters of shorter supports and yet ST can maintain the desirable characteristics like orthogonally and an octave 

– band characteristic, with two zero moments. A new classification method for discriminating between internal fault 

currents and magnetizing inrush currents are presented in this paper by combining Slantlet transform (ST) and artificial 

neural network (ANN) in three phased power transformers.  

This paper proposed a new classification method based on Slantlet Transform (ST) combined with an automated 

classification mechanism based on Artificial Neural Network (ANN) for distinguishing magnetizing inrush currents from 

internal fault currents in three phase power transformers.  The proposed algorithm extracts fault and inrush generated 

transient signals using Slantlet Transform (ST). The developed ANN architectures are trained by using RBF algorithm. ST 

has been regarded as a contemporary development in the field of multi resolution analysis, which proposed as an 

improvement over the discrete wavelet transform (DWT). Extensive simulation studies have been conducted using 

PSCAD/EMTDC software to verify the feasibility of the proposed protection scheme for inrush current at different voltage 
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closing angles, various types of internal faults such as signal phase to ground faults, double phase to ground faults, three 

phase to ground faults, two phase fault and three phase faults, various over excitation case and various external faults. 

Analysis reveals that the technique is able to clearly distinguish an inrush current from a fault condition reliably and 

accurately and avoids relay maloperation during inrush currents. 

Slantlet Transform (ST) 

Slantlet transform is an orthonormal transform that defines a continuous function over L
2
 space with shorter 

support and retains the same level of vanishing moment [25]. This is achieved by employing a filter bank approach than the 

traditional tree based approach, with filters of different lengths at different scales. The methodology gives it more 

Flexibility in designing filters that target different data features, in the spirit of an equivalent form of the DWT 

implementation, where the filter bank is implemented in form of a parallel structure. Figure 1 shows an equivalent form of 

the two scale orthogonal DWT iterated filter bank with two zero moments, called D2 (proposed by Daubechies) and the 

corresponding filter bank realized using ST. This ST filter bank maintains desirable properties of orthogonality and two 

vanishing moments [25]. 

Here different filters are implemented for each scale. For the case in Figure 1, the iterated D2 filters are of length 

10 and 4, while the corresponding Slantlet filters are of length 8 and 4, respectively.  To present a detailed perspective, in 

Figure 1(a), for the implementation of DWT, we have two branches implementing product form of filters: the branch with 

the H(z)H(z
2
) filter and the branch with the H(z)F(z

2
) filter. Each of these two filter branches is of length 10. The other two 

branches for DWT implement the F(z) filter and the z
-2

 F(z) filter, i.e. a shifted version of  the F(z) filter. Each of these two 

filter branches is of length 4. For the implementation of ST, as shown in Figure 1(b), we also have four branches. Two of 

these branches for ST implement the G 1(z) filter and the z
-3

G1 (1/z) filter, i.e. a shifted time-reversed version of the G1(z) 

filter. 

 
Figure 1: (A) Two-Scale Iterated 

2D  Filterbank and (B) Corresponding Two-Scale Slantlet Filterbank 

Each of these two filter branches is of length 4. The two remaining branches implement the H2(z) filter and the 

F2(z) filter. Each of these two filter branches is of length 8. Hence, while G1(z) and z
-3

 G1(1/z) filters are of the same length 

as F(z) and z
-2

 F(z) filters, each of H2(z) and F2(z) filters in ST achieves a reduction of two samples, compared to the 

product filters in the iterated DWT, i.e. H(z)H(z
2
) and H(z)F(z

2
) filters. Similarly, a comparison of the three-scale iterated 

D2 filter bank and the three-scale ST filter bank shows that each of these filter banks employs six parallel branches. In case 

of the three-scale D2 filter bank, two filter branches implement filters each of length 22, two filter branches implement 

filters each of length 10 and the remaining two filter branches implement filters each of length 4. In the case of the three-
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scale ST filter bank, filter bank, two filter branches implemented filters each of length 16, two filter branches implemented 

filters each of length 8 and the remaining two filter branches implemented filters each of length 4. Hence, compared to the 

two-scale case, the three-scale ST filter bank achieved greater reduction in filter support compared to the three-scale D2 

filter bank. As we increased the number of scales (and subsequently the number of the parallel branches), the difference in 

the number of supports kept growing.  

While iterated D2 filters required (3·2i −2) supports at the ith scale, the corresponding Slantlet filters required 

2i+1 supports. Hence Slantlet filters were implemented with shorter and shorter supports and yet they maintained all 

desirable, characteristic features of the iterated DWT filter banks. However, due to the shorter supports of component 

filters, ST provided a filter bank which was less frequency selective than DWT, although ST provided better time-

localization compared to DWT. 

In the case of Slantlet analysis, the desirable feature is shorter support, which gives it the improved time 

frequency localization upon the Haar wavelet counterpart. The filter banks in the Slantlet analysis is determined by solving 

variables (parameters) in (1)  
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The solution to (1) is solved by subjecting (1) to several constraints. All three functions need to satisfy the unit 

form condition and orthogonality to their shifted time reverse condition. Both gi(n) and fi(n) functions need to annihilates 

linear discrete time polynomials [25]. 

RBF Neural Network for Pattern Classification 

A RBF network is a three-layer supervised feed forward neural network, which has a faster rate of convergence 

than back propagation neural network for pattern recognition. It is being extensively used for on- and off- linear adaptive 

modeling and control applications. Moreover, RBF neural network can model random nonlinearity through practice and the 

problem of local minimum is avoided effectively. 

 RBF nets belong to the group of kernel function nets that utilize simple kernel functions, distributed in different 

neighborhoods of the input space, whose responses are essentially local in nature. The architecture consists of one hidden 

and one output layer. This shallow architecture has great advantage in terms of computing speed compared to multiple 

hidden layer nets. Each hidden node in an RBF net represents one of the kernel functions. An output node simply computes 

the weighted sum of the hidden node outputs.  

A kernel function is a local function and the range of its effect is determined by its center and width. Its output is 

high when the input is close to the center and it decreases rapidly to zero as the input’s distance from the center increases. 

Different types of radial basis functions are in use, but the most common is the one, using Gaussian function which can 

provide very fast convergence in the training phase, provided the system can support the memory requirement as showed in 

as Figure 2. Normally, this method is suitable when the system is required to train a maximum of a few hundred free 

parameters.  
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Figure 2: Radial Basic Function Neural Network 

The mapping from input-layer to hidden-layer is nonlinear, and from hidden-layer to output-layer is linear. The 

output of the ith hidden-layer can be formulated as: 

 



1i

ikikii cxRqwq 

                                                                                 (2)

 

Where, x is the input vector, ic  is the center of hidden neuron, iq  is the output of the ith hidden neuron,   is 

Euclidean norm,  R is RBF function. 

The output ky  of the kth output neuron can be formulated as the linear combination of the output of the hidden 

neuron: 





1i

kikik qwy 

                                                                                                           (3) 

 

Where, kiw  is the weigh between the ith hidden neuron and the kth output neuron, k  is the threshold quantity of 

the kth output neuron, threshold quantity of the ith output neuron [26]. 

The design and training of an RBF net consists of 

 Determining how many kernel functions to use; 

 Finding their centers and width; 

 Finding the weights that connect them to the output node. 

The parameters of the RBF units are determined in three steps of the training activity. First, the unit centers are 

determined by some form of clustering algorithm. Then, the widths are determined by a nearest-neighbor method. Finally 

weights connecting the RBF units are calculated using multiple linear regression techniques. 

Simulation and Training Case 

Power transformer operating conditions may be classified as: 

 Normal condition 

 Magnetizing inrush /sympathetic inrush condition 

 Internal fault condition 

In the normal condition, rated or less flow through the transformer, in this condition normalized differential 

current is almost Zero (only no load component of current). 
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Whenever, there is large and sudden change in the input terminal voltage of transformer, either due to switching-

in or due to recovery from external fault getting, a large current is drawn by the transformer from the supply. As a result, 

the core of transformer gets saturated. This phenomenon is known as magnetizing inrush or in other words, inrush can be 

described by a condition of large differential current occurring when transformer is energized in parallel with another 

transformer that is already in service, it is known as “sympathetic inrush” condition. Among the various faults in 

transformer, phase to ground, fault occurs most frequently on the basis of fault current, phase to ground fault, for protective 

device operation view point may be further classified as: 

 Heavy faults, 

 Medium level fault and 

 Low level fault. 

In all above cases, the nature of abnormality is almost same but magnitudes of current resulting due to the fault 

are quite different. If the level of fault can be detected in time and corresponding protective actions are initiated, than the 

major damage to the protected element can be prevented. 

PSCAD/EMTDC simulation software is used to obtain the required current Signals under different operating 

condition of transformer that are fault type, fault condition, source impedance, remnant flux, fault inception time and other 

parameters are changed to obtain training patterns covering  a wide range of different power system conditions for  

investigation of the proposed algorithm. For this, a power system consisting of a 400kv source, three phase 200 MVA, 

400/230 kv, 50Hz , Y/D. Transformer connected to a 220 kv transmission line connected to an infinite busbar is modeled 

and simulated as shown in the Figure 3. 

 
Figure 3: Simulated Power System 

For internal fault, the required current signals are done be simulating various types of internal faults such as signal 

phase to ground faults, double phase to ground faults, three phase to ground faults, two phase fault and three phase faults. 

Two CT
,
s are installed on the primary and secondary side of the transformer with a ratio of 300:1 and 500:1, respectively. 

The fundamental frequency of current is 50Hz. The current waveforms generated using PSCAD software has a sampling 

frequency of 2.5 kHz. There are 50 samples/cycle.  

Feature Extraction 

The test signals so obtained by simulation various operating conditions of transformer are shown in figure 4-6. All 

the components of each Signal are normalized with respect to the fundamental component Generally the Signatures of 

signals are different. Hence, it is possible to classify the different events by extracting the dissimilar features of the 

representative current signals, which can, then, serve as the input to the classifier. 



Differential Protection for Power Transformer Using Slantlet Transform and Radial Basis Function                                                                  73                                                                                                                     

 

Figure 4: Typical differential Current Waveform for Normal Operation 

 

Figure 5: Typical Differential Current Waveform for Internal Fault 

 

Figure 6: Typical Differential Current Waveform for Magnetizing Inrush 

An effective feature extraction scheme reduces the curse of dimensionality, i.e., it reduces the dimension of data 

to be handled by classifier by order of magnitude. So, it is obvious that a good feature extraction mechanism should be able 

to infer meaningful features in an automated way along with determining less number of relevant features to characterize 

the complete system, so that the subsequent computational burden of the classifier to be developed can be kept reasonably 

light.  

Applications of the proposed Slantlet transform (ST), for the extraction of features (based on the suggested 

formulation) can be summarized as the following step by step algorithm:  
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Step 1: At first the current and voltage signals are obtained from the three phase transformer using PSCAD/EMTDC 

software for different types of fault and no fault conditions.  

Step 2: The differential currents of the transformer are calculated. 

Step 3: Slantlet transform of the three phase differential current are obtained using MATLAM software. Each signal can be 

characterized as a finite length one-dimensional signal; its ST output can be computed, by periodizing the signal of size 

[25].  

Step 4: l is defined based on the problem under consideration and the outputs of the g filters and their respective shifted 

time reversed versions are computed for  1.....,,2,1  li  scales. In this part, l  plays main rule in characterizing size of 

signal [25].  

Step 5:  ny is produced by scales i , where  ny  produces the ST output corresponding to the nth spatial position [25]. For 

example, for scale i=1, the corresponding ST outputs, as computed utilizing the 
1g filter channel and its adjacent channel 

comprising the shifted time-reversed version of filter, are produced as ST outputs. Similarly for other scales, the 

corresponding adjacent g filter channels produce ST outputs. 

Step 6: To keep a smaller length of feature vectors we have considered two extreme values of y  as the representative ST 

outputs for each scale. Hence, for each signal, we have chosen two y  as the representative ST outputs for each scale.  

Step 7: each signal is characterized by features vector from y . Namely, for 4l , we created a six- dimensional feature 

vector each signal, similarly we can create another feature vector for different l ’s.  

Step 8: feature vectors of fault and no fault currents are fed to ANN and trained.  

Step 9: ST based relay distinguishes internal fault current from no fault currents. 

Note: In this method, is used from 4l  (since 1624  ). Thus, for each category of fault conditions and no fault conditions 

(normal, and inrush current), we have obtained ST outputs and then we created a six-dimensional feature vector for each 

signal . Flow chart of the STNN based relay algorithm is shown in figure 7.  

 
Figure 7: Flow Chart of the ST-RBFNN Based Relay Algorithm 
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Implementation of ST-RBFNN Based Algorithm and Result 

Neural networks have proved to be very efficient in the field of classification. Thought in recent times support 

vector machines (SVMs) [27] have emerged as a strong competitor for binary classification, yet Different types of artificial 

neural networks are in use, but the most common is the one, using Gaussian function which can provide very fast 

convergence in the training phase, provided the system can support the memory requirement which have shown wide 

ranged useful applications as multi-class classifiers. In this study, back propagation algorithm is used for classifying 

internal fault current from magnetizing inrush current in the transformer. 

The RBF based classifier is developed as a six-input one output system, there six inputs for the RBFNN 

correspond to the six features extracted from each signal. We have   assumed that fault has already occurred. For analysis 

purpose only first cycle of signals; namely, fault condition and no fault condition wave forms, has been considered. Our 

objective lies in demonstrating the usefulness of our algorithm in classifying signals based on data acquired for one cycle 

only. With a fundamental of 50Hz. Hence, the sampling of the signals results in 50 possible instantaneous p.u. current 

amplitudes in each case. These p.u. current amplitudes are computed assuming the amplitude of the fundamental to be 1 

p.u. in each case. Therefore, each one cycle event can be considered as a finite length one dimensional signal, of Size 16 

(which is in power of 2), and is perfectly amenable for analysis by ST. Once the ST outputs are computed for each signal, 

we create a data set of 7M size, where M rows correspond to the number of exemplars in the data set i.e. a total of M 

Signals under consideration.  

The 7 columns indicate that in the dataset, for each Signal, we have 6 input features (extracted by applying ST) 

and 1 corresponding output class label (chosen as 1 for fault current and 0 for no fault currents). This dataset is then 

divided into two Subsets: a training dataset and a testing dataset. For a given h and p (design parameter) RBFN is trained 

using 250 sets of data out of 500 data sets and the remaining 250 sets are used to test the network’s generalization ability. 

In this work, we have used 50% of input signals to form each of the training and testing datasets, Hence, out of 500 signals 

generated under worst case scenario (i.e. the signals generated in the worst affected phase with highest current amplitude) 

for each of the events, 250 signals per event are used for training the neural network and the remaining 250 Signals are 

used for testing purpose.  The mean square difference between the target outputs and the predicted output is the error 

associated with the testing sets.  

The mean square error over all the testing sets is the error estimate for the given RBFN. This procedure is 

repeated several times with different values of h and p to obtain the optimum network structure with the minimum mean 

square error. Various architectures and combinations of input sets have been attempted to arrive to the final configuration 

with a goal of maximum accuracy. Many algorithms are available to find the optimal values of the centers and spread of 

the RBF [28,29,30].  In this paper, the center is found by using ‘‘k-means’’ clustering algorithm. Then, the width is 

determined by a nearest-neighbor. Finally, weights connecting the RBF units and the output units are calculated using 

multiple linear regression techniques. A network with 12 neurons has been found suitable for this work.  

Hence the final architecture consists of 6 input nodes, the hidden layer with 12 neurons and five outputs.  The 

outputs of the network have a unique set (e.g. 100 = normal, 010 = inrush, and 001 internal fault currents). This network 

i.e., with five outputs indicates all the phenomena occurring in the power transformer and it issues the trip signal only 

under internal fault condition i.e., when output is 001. The network training starts with the clustering algorithm. The nature 

of the network is such that the numbers of epochs are same as the number of clusters. 422 training epochs were found 

suitable for this work, as shown in figure 8 and the training error has been reduced to 0.00496. 
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Figure 9: Best Training Performance in ST-RBFNN and ST-FFBPNN 

 

To find the optimal network structure of RBF (i.e., design parameters h and p), a set of RBFNN models was 

trained. In this simulation the number of RBF units (h) varied from 2 to 89 and the overlap parameter (p) varied from 0.067 

to 2.  

After the training of network the net has been tested with different sets of data and the network respond 

adequately performing the discrimination and classification of normal, inrush, and internal fault currents correctly for all 

the cases. Table 1 show the performance of two model and their corresponding errors. 

Table 1: Internal Fault Detector using ST-RBFNN 

 

Operating 

Conditions 

ANN 

Architecture 

Output for the Training of 

Developed ANN Architectures 

Output for the Testing of Developed 

ANN Architectures 

Actual(A) Target (T) Error Actual(A) Target (T) Error 

Normal 

6-6-1 

6-10-1 

6-12-1 

0.0000 

0.0000 

0.0000 

0 

0 

0 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0 

0 

0 

0.0000 

0.0000 

0.0000 

Inrush 

6-6-1 

6-10-1 

6-12-1 

0.00050 

0.00076 

0.00067 

0 

0 

0 

-0.00050 

-0.00076 

-0.00067 

0.00041 

0.00068 

0.00061 

0 

0 

0 

-0.00041 

-0.00068 

-0.00061 

Internal 

fault 

6-6-1 

6-10-1 

6-12-1 

0.9984 

0.9963 

0.9968 

1 

1 

1 

-0.0016 

-0.0037 

-0.0032 

0.9983 

0.9965 

0.9971 

1 

1 

1 

-0.0017 

-0.0035 

-0.0029 

 

Proposed relay has been tested off line using the simulated data of 200 MVA, 400/230 KV, 50HZ, Y/D power 

transformer. The target output is assigned 1 for internal fault currents and 0 for inrush currents during training. The output 

of the ANN is very close to 0 for inrush currents and very close to 1 for internal currents. The designed neural network is 

found to accurately discriminate internal fault current and inrush currents. 

The ANN model classified and recognized the fault in all cases and gave the trip signal output within 1/8
th

 cycle 

of the fault occurrence. ST-RBF the models took approximately 2 ms to recognize the fault once it trained. From the 

switching instant. The output of Slantlet and ANN based relay for internal faults and inrush currents are shown in the fig, 

8(a) and 8(b) respectively. 

 
 

Figure 10: (a). ANN Output for Internal Fault Current 
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Figure 10: (b). ANN Output for Magnetizing Inrush Currents 

 

ST-RBFNN has good generalization capability to distinguish between fault conditions and magnetizing inrush 

condition of power transformer. From the results and above discussions, it is clear that the ST-RBFNN has better detection 

accuracy than the conventional ANNs. the detection time is less or comparable with the conventional ANNs. Tremendous 

capability of ST-RBFNN for classification problems shows suitability for digital differential relaying protection scheme. It 

is free from the setting of threshold value. It is also immune from the different harmonics contained in operating signals 

which makes it simpler and robust than the conventional digital filtering algorithms. All tests of this paper were carried out 

on a simple personal computer IV at 2.13GHZ with 512 MB RAM using the MATLAB software package. 

CONCLUSIONS 

This paper presents a novel approach based on Slantlet transform (ST) combined with an automated classification 

mechanism based on artificial neural network (ANN) for three phase transformer is proposed and its performance is 

compared with some of the most recently published research works in the area. Slantlet transform is an improved variant of 

DWT that can be implemented effectively for feature extraction procedure. The performance of ST as a feature extracting 

tool followed by BPNN as a supervised binary classifier satisfy the challenge posed by the problem. The mentioned 

comparisons reveal the efficiency and robustness of the developed approach. The relay also provides high sensitivity for 

internal fault currents and no fault conditions. In addition, the proposed scheme shows classification accuracy nearly as 

high as 100%. The presented neural network model issues tripping signal in the event of internal fault within 2 ms of fault. 
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